
vDPA Live Migration Downtime Optimizations
for VirtIO Net Devices

NetDevConf 0x18

Dragoș Tătulea <dtatulea@nvidia.com> NVIDIA

Eugenio Pérez Martín <eperezma@redhat.com> Red Hat

Si-Wei Liu <si-wei.liu@oracle.com> Oracle

vDPA Live Migration Downtime
improvements for net devices

Eugenio Pérez Martín
Sr. Software Engineer <eperezma@redhat.com>

2

Agenda

● Basic concepts
○ SR-IOV
○ Live Migration

● Problem: LM with passthrough VF
● Solution: virtio vDPA
● Cross-vendor VM Live Migration Demo
● Shadow virtqueue

Vendor passthrough / SR-IOV

VM Live Migration
● What is Live Migration?

● Process of moving a VM running on one
physical host to another while the guest OS
is running

● The guest shouldn't realize the world is
changing beneath its feet

● Useful for load balancing, hardware /
software maintenance etc.

● How does it happen?
● Mark unsent (or modified) RAM as dirty
● Send RAM content to the destination until a

threshold is reached.
● Stop guest, transfer remaining dirty RAM,

device state
● Resume execution on destination

4

 Hypervisor

SRC HOST DST HOST

Hypervisor

Virtual
Machine

Hypervisor

● What is Live Migration?
● Process of moving a VM running on one

physical host to another while the guest OS
is running

● The guest shouldn't realize the world is
changing beneath its feet

● Useful for load balancing, hardware /
software maintenance etc.

● How does it happen?
● Mark unsent (or modified) RAM as dirty
● Send RAM content to the destination until a

threshold is reached.
● Stop guest, transfer remaining dirty RAM,

device state
● Resume execution on destination

5

 HypervisorHypervisor

Virtual
Machine

Hypervisor

VM Live Migration

SRC HOST DST HOST

● What is Live Migration?
● Process of moving a VM running on one

physical host to another while the guest OS
is running

● The guest shouldn't realize the world is
changing beneath its feet

● Useful for load balancing, hardware /
software maintenance etc.

● How does it happen?
● Mark unsent (or modified) RAM as dirty
● Send RAM content to the destination until a

threshold is reached.
● Stop guest, transfer remaining dirty RAM,

device state
● Resume execution on destination

6

 HypervisorHypervisor

Virtual
Machine

Hypervisor

VM Live Migration

SRC HOST DST HOST

● What is Live Migration?
● Process of moving a VM running on one

physical host to another while the guest OS
is running

● The guest shouldn't realize the world is
changing beneath its feet

● Useful for load balancing, hardware /
software maintenance etc.

● How does it happen?
● Mark unsent (or modified) RAM as dirty
● Send RAM content to the destination until a

threshold is reached.
● Stop guest, transfer remaining dirty RAM,

device state
● Resume execution on destination

7

 HypervisorHypervisor

Virtual
Machine

Hypervisor

Virtual
Machine

VM Live Migration

SRC HOST DST HOST

● What is Live Migration?
● Process of moving a VM running on one

physical host to another while the guest OS
is running

● The guest shouldn't realize the world is
changing beneath its feet

● Useful for load balancing, hardware /
software maintenance etc.

● How does it happen?
● Mark unsent (or modified) RAM as dirty
● Send RAM content to the destination until a

threshold is reached.
● Stop guest, transfer remaining dirty RAM,

device state
● Resume execution on destination

8

 HypervisorHypervisor Hypervisor

Virtual
Machine

VM Live Migration

SRC HOST DST HOST

Live Migration: SR-IOV VF Passthrough

● Requires identical
NIC HW on both
source and
destination host

○ Tight coupling
between the
Guest SW and
Host HW

○ Vendor’s VF driver
required in the
Guest OS

Vendor 1 NIC

VF

Vendor 2 NIC

Hipervisor

MIGRATE

Source Host Destination Host

Linux VM

Vendor1
driver

Hipervisor

VF

Virtual I/O Device (VIRTIO)

● Virtio is a specification that describes
virtual devices, drivers and how they
interact.Data plane

■ Virtqueues, implementing with
vrings: ring of buffers
descriptors

■ Transfers the actual data
○ Control plane

■ Manages the data plane
■ Feature negotiation, shared

memory configuration…

● Virtio is a specification that describes
virtual devices, drivers and how they
interact.
○ Data plane

■ Virtqueues, implemented with
vrings: ring of buffers
descriptors

■ Transfers the actual data
○ Control plane

■ Manages the data plane
■ Feature negotiation, shared

memory configuration…

Virtual I/O Device (VIRTIO)

● Virtio is a specification that describes
virtual devices, drivers and how they
interact.
○ Data plane

■ Virtqueues, implemented with
vrings: ring of buffers
descriptors

■ Transfers the actual data
○ Control plane

■ Manages the data plane
■ Feature negotiation, shared

memory configuration…

Virtual I/O Device (VIRTIO)

vDPA

● Live migration is
transparent
○ Guest always talk with

virtio-net device,
irrespective of actual
vendor HW

○ Hypervisor doesn’t
require guest’s
collaboration.

Live Migration with vDPA
Source Host Destination Host

Linux VM

virtio-net
driver

HypervisorHypervisor

vendor 1
vdpa driver

vendor 2
vdpa driver

Vendor 1 NIC

VF

Vendor 2 NIC

VF

Source Host Destination Host

Linux VM

virtio-net
driver

HypervisorHypervisor

vendor 1
vdpa driver

vendor 2
vdpa driver

Vendor 1 NIC

VF

Vendor 2 NIC

VF

MIGRATE

Live Migration with vDPA

● Live migration is
transparent
○ Guest always talk with

virtio-net device,
irrespective of actual
vendor HW

○ Hypervisor doesn’t
require guest’s
collaboration.

Source Host Destination Host

Linux VM

virtio-net
driver

HypervisorHypervisor

vendor 1
vdpa driver

vendor 2
vdpa driver

Vendor 1 NIC

VF

Vendor 2 NIC

VF

MIGRATE

Live Migration with vDPA

● Live migration is
transparent
○ Guest always talk with

virtio-net device,
irrespective of actual
vendor HW

○ Hypervisor doesn’t
require guest’s
collaboration.

● Source host (dell750-28)
has two interesting NICs
○ AMD Xilinx SN1022
○ Mellanox ConnectX 6

(running iperf server)
● Destination host (dell750-23)

has single interesting NIC
○ Nvidia ConnectX 6

● These NIC ports are
connected via Switch

Demo scenario
Source Host Destination Host

Linux VM

virtio-net
driver

HypervisorHypervisor

sfc
vdpa driver

nvidia
vdpa driver

Xilinx NIC

VF
Nvidia NIC

VF

MIGRATE

Switch

NIC 2
port

iperf -s

VF

DEMO

https://www.youtube.com/watch?v=ocpwyiBkBBc

Shadow virtqueue: Regular operation

out of qemu

1

out of qemu

Shadow virtqueue: Regular operation

out of qemu

2

Initiated by qemu:
VHOST_VDPA_SUSPEND

out of qemu

Shadow virtqueue: Regular operation

3

QEMU:
VHOST_GET_VRING_BASE
get_vq_state()

out of qemu

Shadow virtqueue: Regular operation

4

out of qemu

QEMU:
Config NIC

Shadow virtqueue: Regular operation

5

out of qemu

Guest:
(Makes descriptors available)

Shadow virtqueue: Regular operation

6

out of qemu

QEMU copies & kick device
Device reads them

Shadow virtqueue: Regular operation

7

out of qemu

Device marks desc as used

Shadow virtqueue: Regular operation

9 8

out of qemu

Shadow virtqueue: Regular operation

vDPA Live Migration Downtime
improvements for net devices
Netdev 0x18

Si-Wei Liu

Oracle Corporation

7/16/2014Copyright © 2024, Oracle and/or its affiliates 1

<si-wei.liu@oracle.com>

Extend vDPA Infra to Cloud Scale

7/16/2014Copyright © 2024, Oracle and/or its affiliates 2

• Scale
- Hundred of Virtual Functions per card - VM use case
- Thousand of Scalable Functions per card - container use case
- Could support VM with high density of vDPA vNICs
- VM could go up to a couple of TBs in memory size and 100+ of vCPU cores

• Performance
- Should exceed para-virtualized vhost-kernel backend
- Should be comparable to SR-IOV passthrough: H/W offload required
- Micro-benchmarks: bandwidth, packet rate, latency, host cpu utilization

• Live Migration & Hypervisor (QEMU) Live Update
- Should keep 50% - 70% of I/O performance during live migration
- Target sub-second latency (a few hundred milliseconds of blackout time) per VM
- Goal is to have per-device teardown & startup cost to be < 100 milliseconds!

vDPA Live Migration - Overview of Challenges

7/16/2014Copyright © 2024, Oracle and/or its affiliates 3

• vDPA hardware device assisted dirty tracking?
- Hardware resource constraints: scalability bottleneck
- Highly contentious with host vCPU dirtying thread
- No intrinsic throttling on DMA, indirect throttling via hypervisor software as mitigation
- Performance optimization could be complex and vendor device dependent

• IOMMUFD dirty tracking
- IOMMU dirty tracking only available in newer platforms

• Safe Harbor: Software Mediation via Shadow VirtQueue (SVQ)
- Implementation originated from software virtio-based backend
- Slow on real hardware device, could use some improvements
- Profiling on hardware backend: most costly part is on memory pinning (and mapping)
- Varied sources of latency on hardware device startup or teardown affecting downtime
- Some are vendor device specific: on-chip iommu mapping, virtqueue creation and setup
- Some are generally related to virtio spec conformance or vhost(-vdpa) plumbing

Shadow VQ - Performance Potentials

7/16/2014Copyright © 2024, Oracle and/or its affiliates 4

• Move hardware slow path out of downtime!
- Device reset (slow) -> Suspend and Resume (relatively fast)
- SVQ translation cost -> Dedicated address space for SVQ descriptors
- DRIVER_OK setup cost at dest -> Move it ahead to device initialization? Iterative migration?
- uAPI: vhost-vdpa backend features
- Multiple CVQ cmd ioctls to restore device state -> Batch and streamline with io_uring?
- Multiple vhost-vdpa devices -> Parallelize migration with multi-threaded per-device teardown
- Participation and feedback from hardware vendors are more than welcomed!

• Further improve Shadow VQ datapath performance
- only forwards descriptor metadata rather than copy over memory buffers
- bandwidth throughput: could use multi-threaded SVQ
- lower down PCIe transaction and cache utilization: packed ring

• Could be used to emulate other ring layout using virtio v1.0 spec compliant device
- legacy v0.9.5 device emulation due to lack of IOMMU platform feature

1

vDPA Live Migration Downtime Optimizations
for VirtIO Net Devices

Dragoș Tătulea (NVIDIA)

<dtatulea@nvidia.com>

NetDevConf 0x18

2

Live Migration Downtime

With Shadow VQ on Hardware vDPA

Copyright © 2024, Oracle and/or its affiliates27/16/2024

Downtime #2Downtime #1

VM resumed on

destination host;

Live Migration completed

Switched to

SVQ from

passthrough

mode

VM stopped

on source host

time

Live Migration

Traffic

Live Migration

started on

source host

3

Live Migration Downtime

… a closer look

Copyright © 2024, Oracle and/or its affiliates37/16/2024

Downtime #1 Traffic Downtime #2

Destination VM

Source VM

4

Downtime Breakdown
Downtime #1

• Shared memory mapping for both guest memory and Shadow VQ

• Unnecessary memory mappings/unmappings

• Cost of tearing down and setting up hardware virtqueues

5

Downtime Breakdown
Downtime #2

• Page pinning cost at device startup

• Create and set up hardware virtqueues

6

Downtime Breakdown
Device considerations

• Expensive operations for mlx5_vdpa device

o Memory mapping/unmapping

▪ On chip IOMMU

▪ Relative to map size

o Virtqueue resource creation/deletion

▪ Number of virtual queues

7

Path to a Lower Downtime

1. Move operations out of downtime

2. Reduce operations in downtime

3. Make operations faster

8

Early page pinning at device initialization
Qemu

• Page pinning done on destination after source device stops -> downtime

• Send guest memory layout to destination during active period of live migration

• Keep migration state on source until mappings on destination are done.

• Mapping done on a separate thread to not block QMP.

• [PATCH for 9.0 00/12] Map memory at destination .load_setup in vDPA-net migration

9

Descriptor group for SVQ ASID
Qemu, Kernel, Hardware

• Virtqueue descriptors in own mapping

• Only descriptors -> much smaller maps

• Buffers in still in default map

• New API for configuring descriptor virtqueues map in new ASID

• Merged in mainline v6.7

• mlx5_vdpa: [PATCH vhost v4 00/16] vdpa: Add support for vq descriptor mappings

• vdpa core: [PATCH RFC v2 0/3] vdpa: dedicated descriptor table group

• Qemu:

• [PATCH 00/40] vdpa-net: improve migration downtime through descriptor ASID and persistent IOTLB

• Based on page pinning series.

Copyright © 2024, Oracle and/or its affiliates9 7/16/2024

10

Decouple map flush from device reset
Kernel

• vDPA device reset

o Reset device state

o Reset mapping

• Map reset is not always necessary

• New API:

o .reset(): does not reset map

o .reset_map(): resets only map

o .compat_reset(): old behaviour

• Merged in mainline v6.7: [PATCH v5 0/7] vdpa: decouple reset of iotlb mapping from device reset

11

Resumable virtqueues

• Merged in mainline v6.8: [PATCH vhost v5 0/8] vdpa/mlx5: Add support for resumable vqs

• Qemu Resumable VQs PoC - Upcoming

1

1

7/16/2024

SUSPEND + RESUME (v6.8)

• SUSPEND -> .suspend()

• Change ASID for SVQ descriptors

• RESUME -> .resume()

SUSPEND + RESET (pre v6.8)

• SUSPEND -> .suspend()

• GET_VRING_BASE -> .get_vq_state()

• RESET -> vdpa_reset() slow operation

• Change ASID for SVQ descriptors

• Restore device states

• .set_config()

• .set_vring_addr()

• .set_vq_state()

• .set_vq_ready()

• .set_status(DRIVER_OK) slow operation

Qemu, kernel, hardware

12

Pre-create Virtqueues
Device side optimization

• Previously:

o All hardware virtqueue resources created on device start
(status DRIVER_OK)

o For many devices with many virtqueues, this adds up.

• Now:

o Initialize device with default state

o Virtqueue configuration:

▪ Fast, tracked on driver side.

▪ Apply configuration to hardware

• Slow path: non default queue size

• [PATCH vhost v2 00/24] vdpa/mlx5: Pre-create HW VQs to reduce LM downtime

• Possible improvement: configurable default queue size

13

Downtime Reduction Overview

• Benchmark VM:

o 128 GB RAM

o 8 CPUs

o 2 vDPA net devices, each with 4 data virtqueues

• Downtime measurements with mig_mon tool

• No hugepages

14

Downtime Reduction Overview

• Benchmark VM:

o 128 GB RAM

o 8 CPUs

o 2 vDPA net devices, each with 4 data virtqueues

• Downtime measurements with mig_mon tool

• No hugepages

• VQ precreation: ~ 300 ms / device reduction

o 256 GB RAM VM, 64 vCPUs, 4 devices x 32 virtqueues

15

Upcoming Improvements
Generic

• Scaling

• Parallel device operations

• Parallel VQ operations (device level)

• Move work out of downtime #2

o Map memory ahead of time

• [PATCH 0/6] Move memory listener register to
vhost_vdpa_init

o Device configuration before downtime

• [RFC PATCH 0/5] virtio-net: Introduce LM early load

16

Thank you

Questions?

